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I. INTRODUCTION

The temperature stability of surface acoustic wave resonator and delay line devices

has long been a major concern for system designers. When designing a high frequency

SAW resonator, temperature-compensated crystal cuts are selected to aid in maintaining

oscillator stability. In many materials, lithium niobate and lithium tantalate, for example,

these temperature-compensated crystal cuts may be noneistent. Even in those materials

where the temperature-compensated cuts do exist, quartz, for example, they may not be

optimum with respect to other properties-for example, insertion loss, piezoelectric cou-

pling, or wave velocity. In order to provide increased freedom in the design of these devices,

this report summarizes the results of an investigation of the temperature compensation of

surface transverse waves for stable oscillator applications.

II. TEMPERATURE COMPENSATED SURFACE TRANSVERSE WAVES

(a) Background

It has been previously shown that horizontally-polarized shear surface waves (STW)

can exist on a semi-infinite substrate with a periodic corrugation or grating on the

surface 1'2.This phenomenon differs from Rayleigh wave propagation, on structures cur-

rently used in SAW resonator applications, by the fact that the shear surface wave does not

exist in the absence of the grating. For a smooth semi-infinite isotropic substrate a shear

surface skimming bulk wave (SSBW) does satisfy the stress-free boundary conditions. This

SSBW solution can also exist for certain orientations of anisotropic substrates. Placing a

corrugation or grating on the surface slows down this SSBW in a manner entirely analogous

to that in the corresponding electromagnetic problem, 3
,
4 and thereby converts it into a

shear surface wave-a Surface Transverse Wave (STW). A SSBW, and thus a STW, can

exist on trigonal crystal plates if propagation is normal to the X-axis. The basic wave

theory for this geometry has already been developed neglecting piezoelectricity s .56

The surface transverse wave (STW) has several inherent advantages over SAW: (1)

Higher acoustic velocity, leading to larger IDT periodicities at the same frequency; (2)

ki. ~3/4

'I3 a=a- --. ~ ----.



Low propagation loss; and (3) Temperature characteristics that are dependent on the

grating structure used to trap the wave energy on the surface, as well as on the crystal

orientation. By properly choosing the grating height, this third advantage allows one to

predict temperature compensation in quartz for STW propagating normal to the X-axis

for almost all rotated Y-cuts. Compensation can also be achieved for several rotated Y-cut

* angles of lithium niobate and lithium tantalate crystal plates.

This grating temperature compensation effect can be explained by referring to the

*dispersion curve in Fig. 1. In the absence of the grating, the dispersion curve is the

(SSBW) line. When the temperature is changed, the slope of this line changes because

of changes in density and elastic constants. In the presence of the grating a stop-band

appears (6w), with a width that is a function of the crystal stiffness constants, the crystal

density, and the grating dimensions. As the temperature changes, the width of this stop

band changes. To achieve temperature compensation, the width of the stop band must

change with temperature in a way that compensates for the changing slope of the SSBW

line, so that an operating-point on the STW curve (wr) remains stationary. This can be

achieved in many cases by selecting appropriate grating dimensions for a given crystal type

and orientation.

It has been found that the theoretical temperature compensation achieved for STW

propagation normal to the X-axis on rotated Y-cut quartz is comparable to, and for some

orientations surpasses that for, the AT cut surface skimming bulk waves. Temperature

compensation of STW propagation normal to the X-axis on rotated Y-cut lithium niobate

and lithium tantalate crystal plates can also be achieved with deep gratings. However.

these crystal orientations are unfortunately not piezoelectrically active in the cases of

niobate and tantalate.

The STW analysis referred to above considered propagation on corrugated surfaces of

rotated Y-cut trigonal class crystals with grating dimensions corresponding to the cavity

region of Fig. 2, where the STW is in a pass-band. The method used was to apply Floquet's

Theorem, which gives the general form of the characteristic wave solutions, separately

to the semi-infinite substrate and to the grating. Application of appropriate boundary

5
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wA SSBW LINE
/ W// = Vs (T)

(8w(h(T), A(T),p(T),c 1j T)

; (FIXED)

ISTW LINE

___ __ __ __W// VSTW (T)

7r/A(T)

FIGURE I

Grating termperature compensation mechanism for STW. The effect of temperature on

the SSBW line is balanced by changes in the stopband width and position on the 3 axis.
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FIGURE 2

STW gratin% resonator structure on a rotated Y-cut quartz plate with grating tooth width

W = A/2.
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conditions at the grating-substrate interface then gives the dispersion relation and the

relative amplitudes of the various space harmonics. In applying the boundary conditions a

:' .1shallow grating was assumed, and the stress at the bottom of a tooth was calculated using

the Datta-Hunsinger Perturbation Formula.7 A review of this STW theory follows, along

with a detailed analysis of the STW temperature characteristics.

(b) Surface Transverse Wave (STW) Theory for Grooved Gratings

Starting from the general acoustic field equations one can derive the following

differential acoustic wave equation governing horizontal shear wave propagation normal

to the X-axis in trigonal rotated Y-cut crystal substrates.
c9~v 2v 8 02v O~Vz 1
c y2 + 2c,58 a-oz- +c -p(1

C 6 8  + C z 2 =P t2

where
v, is the particle displacement velocity

cii are rotated stiffness constants

p is the density of the trigonal crystal

x, y, and z are the space coordinates
t is the time coordinate

A solution based on Floquet theory consisting of an infinite sum of space harmonics is

assumed in the substrate (Y < 0 in Fig. 2).

CIO
Vz  E a) tleO"Y -i3.Z e i W t

n-o (2)
3 3 2,rn

- ~ A
where

a, is the nth space harmonic amplitude

3,, is the space harmonic propagation constant

a, is the lateral attenuation constant into the substrate

.' is the steady state angular frequency

A is the grating period

Each space harmonic solution is substituted into Eq. 1, resulting in the following relation

for the nth space harmonic lateral attenuition constant

ca coo coo
8



where
C5 5 Coe - C58

Cel I =-
COB

The amplitudes of the space harmonics a,,'s which make up the acoustic wave (Eq.

2) must be selected so as to match the periodic boundary stresses imposed by the surface

grating over the entire surface. Because of the periodic nature of this structure, it is a

necessary and sufficient condition for the space harmonic amplitudes to match the surface

boundary condition over just one period. Thus only the region of a single period need be

considered. The tangential stress imposed by the tooth of the grooved grating is given by

the following Datta-Hunsinger interface stress relation7

To = jwphv, - (4)-t a
where

T is the stress in the crystal at the interface Y =0

v' is the particle displacement, which is the

same in the tooth as in the substrate

because of the continuity of displacement

boundary condition at Y = 0

T~ is the stress in the grooved tooth

h is the height of the tooth

p/ the density of the tooth
u is the angular frequency as stated above

In the case of the grooved grating the density p' and the stress T are the same as

those in the substrate. This is not true in the case of metal strip mass loading, which will

be considered later. This surface stress must equal the acoustic field stress in the substrate

at Y = 0 in Fig. 2. The acoustic field stress in the substrate can be expressed in terms of

the displacement velocity and is

Tr - . + .)cte '9

To obtain the as's in Eq. 2 the boundary stress at the surface of the substrate, Eq.

4 is set equal to the boundary stress under the grating Eq. 5. This is converted to a

set of linear algebraic equations for the a,,'s by using the orthogonality of the different
4 g
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space harmonies. This is done by multiplying each side of the condition equation by the

complex conjugate of the qth space harmonic term expf,3qz], and then integrating over a

single period from Z = 0 to Z = A. If Eq. 3 is used to eliminate the lateral attenuation

constants a, , the following infinite set of linear equations is obtained'

[Ceiif3g pw2]1/2aq = EaKq (6)

where
q =...-2,-1,0,1,2...

= C8C6 - C28

COB

1 J.2. /eff 2 W2

knq - h .fAo -w2p - -lnceff . C5t3

I(i%3 + 6(z) - 6(z -

The characteristic determinant of this set of equations defines the dispersion relation (W -

fL3o)) for the STW.

When there is no grating (h = 0), the right-hand side of Eq. 6 is equal to zero and

the following dispersion relation is obtained.

W -2 Ceff -V

T'q P (7)

3 q =
3 0 + 

2 yq

where V, is the SSBW velocity. This is the SSBW dispersion relation, but periodically

replicated for each value of q. This is exactly what is expected, since the SSBW is the

wave solution in the absence of the grating.

The top of Fig. 3 shows a graph of Eq. 7 for q = 0. The bottom shows the SSBW

dispersion curves repeated for each space harmonic. (Note that all of the curves are plotted

against the same abscissa 3o.) The points where pairs of curves cross correspond to a

resonant point between the two space harmonics comprising the two crossing curves. For

,- example, the point where the forward-going 0th space harmonic and the backward-going

10
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FIGURE 3

Space harmonic dispersion curves.



-ith space harmonic lines intersect (R in Fig. 3) corresponds to the resonance point 30 -

,r/A and w - Vir/A. At this point the left hand side of (Eq. 6 ), is equal to zero for

q = 0 and q = -I and non zero for all other values of q. Thus, the magnitude of the 0th

and -lLh space harmonics have to be much much greater than any other space harmonics

in order to maintain the equality of the space harmonic equation. The amplitudes of the

space harmonics, of course, cannot become infinite. Solution of Eq. 6 shows that a coupling

between the resonant harmonics results in a bending of the dispersion curves away from

the resonant point noted. This creates a prohibited frequency band or "stop band" where

the STW will not propagate, as shown in the lower part of Fig. 3.

If the surface height h of the grating is small and the analysis is limited to only those

values of w and 30 near a resonant point, then the two resonant space harmonics are the

only non-negligible space harmonic terms. Keeping only the 0th and -Ith space harmonics

terms reduces the infinite set of equations Eq. 6 to the following coupled linear equations.

t Cff 0- - pw2]1/2a-.I = Ko- 1 ao (8)

[Ce'O f - pW2 11/2 ao = K-oa-

where Ko,- 1 = K. 1 .0 = (2-pV,/Ac86 )(h/A)2 .

These equations are analogous to the well-known (coupled wave theory) used to describe

SAW propagation is similar structures.8

To calculate the STW dispersion curves from these coupled wave equations. a small

frequency perturbation 6w, and a small propagation constant perturbation 6/3 are assumed

*- relative to the 0th and -lth space harmonic resonant point at R in Fig. 3. This leads to

the coupled wave dispersion relation found by Renard'
6)2 = (6W/V) 2 

- K 2

where the surface skimming bulk wave (SSBW) velocity is

= (c 55 c88 - c* 8)/pce = Cf f / P 0)

the space harmonic coupling constant is

2(T)pV 2  2K =('(h/A) 2
Aca6

12
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and h is the height of the grating
A is the period of the grating

p is the density of the crystal

c== are the crystal stiffness constants

Using the above near-resonance approximation the analytical expression for the

velocity of pure STW propagation normal to the X-axis on rotated Y-cut trigonal crystals

is
v , - V (10)

wo - [(wo - w)- - (VK)2]1/2

where the Bragg, or center stop-band, frequency (corresponding to the resonance point R

in the figure) is

wo = rV./A

and the STW operating frequency is w.

In the low-frequency pass-band of the grating (the heavy line in Fig. 3) the velocity

in Eq. 10 must be pure real. From the equation, this obviously requires that

(WO0 WJ)2 > (V. K) 2  11

Note that che lower and upper edges of the stop-band are defined by an equality sign

in Eq. 11. Since the temperature and rotation angle dependence of V,, w , and K

can be obtained from the temperature dependence of the material constants and grating

dimensions, the temperature dependence of the STW velocity can thus be calculated.

Knowing the temperature characteristics of the STW velocity, a grating can be selected

to temperature compensate the surface wave at room temperature, for crystal cuts at

different rotation angles. This will we be presented for both grooved grating and mass

loading grating structures in the following sections.

(c) Temperature Compensation of Grooved Grating STW's

The three quantities normally used as a measure of temperature stability in SAW

devices are the temperature coefficient of delay (TCD), the fractional time delay change

AtI/t, and the fractional frequency change AF/F. In this investigation of the temperature

13



characteristics of STW the TCD is used to aid in the selection of the grating height, and

the fractional frequency change AF/F is used to compare the frequency stability of the

various materials and compensation methods. The TCD is defined aso

TCD - - (1/V,) dT (12)

where Vt,, is the STW velocity and a is the expansion coefficient in the direction of

propagation. To better facilitate the prediction of a grating height that achieves a zero

TCD crossing at room temperature, a scheme for relating the TCD curves to the crystal

rotation angle was developed, with the grating dimensions and operating frequency as

parameters. If only small changes with temperature are considered, and higher order terms

are neglected whenever possible. the TCD at frequency wr in Fig. I can be approximated

as

TCD =-- H[2(,, - At,) - coote + 2hce + ptel - J[VotC - At,] (13)Fo - F~o

where

H = 4(h/A)4(cef f/co8 )2

j = WI/WO _(W/WO) 2
F0 =FO= [(, )IO 2 - H"'/ 2

Vtc and csast are the surface skimming wave velocity and

66 stiffness temperature coefficients in the rotated coordinates-

Atc and ht, are the linear expansion coefficients for the

period and height in the rotated coordinates;

pt, is the temperature coefficient of density or the crystal

This expression can be evaluated for the temperature dependence of the TCD. since the

temperature coefficients for coo, h and A are known experimentally.' 0 " The skimming

bulk wave velocity temperature coefficient is calculated (using Eq. 9) to be

V,- (2c86Lf - c 8-C )c /c8 PtC/2 (14)

This equation for the surface skimming bulk wave velocity temperature coefficient was

checked by substituting the stiffness constants for quartz" and comparing with published

curves for the SSBW temperature coefficient.' 2 An exact match was found.

14
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Setting the TCD equation Eq. 13 equal to zero gives a condition on the frequency W,

in Fig. 1, the crystal rotation angle 9 in Fig. 2, and the grating dimensions required to

achieve a TCD zero crossing. This condition is

J=HA

where J and H are defined by Eq. 13 and A (the compensation factor) is

A = [2(+ 2ht +Pte -cet) (15)

The compensation factor is a measure of the grating height required for temperature

compensation. The greater the compensation factor, the greater the height of the grating

required to achieve zero TCD. Since J is positive, it is clear from Eq. 14 that only a

rotation angle with a positive compensation factor A can be used to achieve temperature

compensation with a grating.

Plots of the compensation factor A vs. Y-cut rotation angle are given for quartz.

lithium niobate and lithium tantalate in Figs. 4, 5, 6. Because A for quartz is positive.

for almost all the Y-cut angles, the STW can be temperature compensated at any of

these angles by properly selecting the grating dimensions. The compensation factor goes

to zero at an angle of -50 and again at an angle of 36*. At these angles the grating

height for compensation is zero because these orientations, which correspond to the SSBW

AT and BT cuts, are already temperature compensated in the absence of the grating.

Using this theory, we are able to select grating dimensions that temperature compensate

STW propagating normal to the X-axis on rotated Y-cut quartz at essentially all rotation

angles. We have selected a few of the better known orientations for quartz and compared

their temperature compensating properties to those of the SSBW AT and BT cuts in the

following section.

This result has applications in many areas where temperature behavior is of major

concern. For example, in reference 44 the temperature characteristics of acoustic filters

are used to compensate for temperature changes in the timing-loop electronics of undersea

fiber transmi.;sion systems. Presently, the temperature characteristics of these filters are

15
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.

FIGURE 4

Compensation factor A (Eq. 15) versus Y-cut rotation angle for quartz. Grating compen-
sation is possible only for A greater than zero (-90* to -50, -49" to 35*, 35" to 90').
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FIGURE 5

As In Fig. 4, for lithium niobate (-.540 to 4V0).
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controlled by adjusting the orientation of the quartz substrate-a process which does

not allow for slight modifications of the temperature behavior once the crystal substrates

are delivered. If STW filters were used they would allow greater freedom in selecting

.- the crystal orientation, and the temperature behavior could be adjusted by selecting the

grating dimensions. This would allow the selection of the ET-cut (maximum coupling)

while still giving the required temperature behavior.

(d) Temperature-Frequency Characteristics of Grooved Grating STW Resonators

Fractional frequency change (AF/F) versus temperature curves for a resonator, are

calculated from the resonator resonant frequency condition, and are referenced to the

turnover frequency F0 . The turnover frequency is the frequency at which the temperatur.

derivative of frequency goes to zero. The resonant frequency condition is

F(r) = ,V,/2L. (16)

where Vt,, is the STWV velocity, L,. is the length of the resonator region in Fig. 2, and .N

is an integer. From the temperature coefficients available for quartz in the literature 0 the

temperature dependence of the Vtw and L, are calcu!.'ted and used to evaluate

F/F = F(T -FO

for various grating compensation geometries determined by Eq. 14.

Figure 7a shows the effect of grating compensation at a Y-cut rotation angle near the

-AT-cut (SSBW temperature compensated at 25°C). The turnover temperature for SSBW

on a 37 rotated Y-cut quartz crystal is at 85°C. By adding a grating to create a STW

we effectively shift the turnover temperature to a lower temperature. Proper selection of

the grating height shifts the turnover temperature to room temperature (25°C) and thus

temperature compensates STW propagation normal to the X-axis on 37 rotated Y-!it

quartz.

Figure 7b is a comparison of STW temperature compensation at several different

rotated Y-cut orientations. The ET-cut' 3 (maximum piezoelectric coupling) has a 1F/F

" - --
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FIGURE 7

Examples of IFIF curves for STW in quartz. (a) Turnover temperature shift due to the

STW grating near the AT-cut; (b) Comparison of the STW temperature compensation for

the ET-cut and the 32' cut with the SSBW AT-cut; (c) The effect of the STW grating on

the cubic behavior of the -50.5* cut.
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curve that is not as flat as the SSBW AT-cut. while the 32* cut (large surface wave velocity)

has a AF/F curve that is flatter than the AT-cut and thus has a better temperature

characteristic near the turnover temperature.

Figure 7c shows the cubic behavior of the -50.5 rotated Y-cut SSBW. This cubic

behavior is lost when the grating is introduced to temperature compensate the wave.

Because of this the AF/F curve is not as flat as the SSBW BT-cut. (However, it should

be noted that the temperature curve is flatter for STW on this orientation than for any of

the cases considered in parts (a) and (-b) of the figure.) This loss of the cubic behavior is

also observed when the SSBW is compensated using metal overlays.' 4

(e) Surface Transverse Wave Theory for Mass Loading Gratings

Surface transverse wave propagation under a mass loading grating differs from the

-. grooved grating in several ways. In the absence of the grating the solution is a SSBW,

as it was for the grooved grating, but the slowing effect of the mass loading is two-fold.

The first slowing effect is that of the grating and has characteristics similar to the grooved

grating STW described above. In addition, a second -lowing effect is due to the different

shear wave velocities in the substrate and the strip. If the velocity in the strip medium
is slower than that of the substrate, the surface wave propagating beneath the strip has

an additional slowing term which is dependent on the stiffness difference and the density

difference between the two materials. This additional slowing effect is similar to the slowing

of Love wave propagation along the surface of a quartz substrate with a thin metal overlay.

Both of these slowing effects aid in the trapping of the SSBW to form a mass loading

STW. This ability to independently choose the grating material ;s important because it

g ives another degree of freedom in designing for temperature compensation.

The derivation of the mass loading STW velocity differs from the grooved gratings in

the application of the Datta-Hunsinger boundary condition used to find the space harmonic

equation. For mass loading the stress T'. and density p' in the strip in Eq. 4 differ frorn

those of the substrate, and thus the coupling terms K,,q are more complicated. Making the

same resonance approximation as in the derivation for grooved STW derivation, where oniy

the 0th and -lth space harmonics were considered non-negligible, the following coupled
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equations are obtained.

ICe3_. - pW2]'/12 a_. = K_ 1._a + Ko_.ao (18)
ce/.o - 2]112 ao = K. 1oa- 1 + Kooao

where

_-_o = - K , =whP' A (V)2 + 2,r _m2

Koo = K- 1-1 =jwhl _21

002 V.

Vm = the wave velocity in the mass loading strip.

To calculate the STW dispersion curves from Eq. 18, a small frequency perturbation 6W

and a small propagation constant perturbation 6w are assumed relative to the 0th and

-Ith space harmonic resonant point (R in Fig. 3 ). This leads to the following mass loading

coupled wave dispersion relation

K _ 2o o ] / . . 1 K . 1  - K o o K o o [ ( w 1 / ( b 6w ) 1 / 2 ]6 22ca3 + [(- + 6'3)I -63
LV, - ~3 (2~oGJ)2pcooA 3  V./

Using this dispersion relation, and making the near stop band approximation, an analytical

relation for the mass loading STW velocity can be found. This is

l't - (20)
Wo - [(wo - W)2 _ (V M)2] 1 / 2

where

" 2 pV ) 2r 2/
("2 L(' + (Vmv1 )( iv ))) ( m) ]

Note this has the same form as for the grooved STW, but with a modified coupling constant.

Again, as in the grooved grating case, the following condition must be satisfied for STW

propagation in the pass-band

(Wo _ J)2 > (V.AJf)2  (1

The STW velocity for the mass loading grating reduces to the velocity for the grooved

grating when the density and stiffness of the strip are the same as the substrate, as expected.
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With the grooved STW, this result can be applied to an investigation of the temperature

characteristics of mass loading STW propagation normal to the X-axis on rotated Y-cut

trigonal crystal plates. However such an investigation is, in itself, not beneficial at this time

because the mass loading theory described above is incomplete from a temperature analysis

point of view. The theory fails to include the possibility of the mass loading material

having thermal expansion coefficients that differ from the substrate material. Preliminary

stress strain calculations indicate that the effect of these different thermal expansion rates

will have a greater effect on the temperature behavior than that of the grating geometry

and material slowing effects in the mass loading grating STW theory given above. This

thermal expansion effect, along with methods to incorporate it into the mass loading, STW

theory are described in the following section.

III. STATIC STRAIN EFFECTS ON MASS LOADING

GRATING STW PROPAGATION

(a) General Considerations

In a metal strip or mass loading grating the grating is made of a different material than

the substrate and thus wil!. in general, have different acoustic and thermal characteristics.

A difference in thermal expansion coefficients causes the metal strip to expand or contract

at a different rate than that of the substrate. If the metal strip continues to adhere to

the substrate without cracking, the substrate and the metal strip must undergo small

deformations to allow for the different thermal expansion rates. Because this deformation

or strain field varies slowly with time compared to the strain fields of the propagating

STW, it is referred to as a static strain. This static strain is a function of the temperature.

the thermal and elastic characteristics of the two dissimilar materials, and the method

used to deposit the metal strips on to the substrate. If the deformation or static strain

is small (that is if it remains in the linear region of the stress vs. strain curve of the

material, Fig. 8), it will have little effect on the STW behavior, other than the change in

grating dimensions already accounted for, and thus be negligible. However, if the material
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is strained to the point where the stress strain curve is no longer linear then the stress

strain relation

T1 = ctsSs (22)

which governs the STW is changed and the STW analysis must be modified to account

for this effect. In the case of aluminum strips on quartz, lithium niobate or lithium

tantalate this added strain effect is not negligible and must be incorporated into our STW

temperature theory to predict accurate STW temperature behavior. This will be done by

introducing a temperature-dependent static strain term in the crystal stiffness constants

used in evaluating the STW velocity. A discussion on this static strain term follows.

(b) Static Strain Theory on Overlay Gratings

- - The static strain theory developed here is based on the assumption that the particle

displacement is the superposition of a small dynamic displacement and a larger static

displacement. The small dynamic displacement is due to the stress fields of the acoustic

wave and the large static displacement is caused by the forces created by differential

expansion of the metal strips and the crystal substrate. This theory can be thought of

as the mechanical analog to the small signal circuit analysis of electronic circuit theory

where there is a small AC single superimposed on a large DC bias. In each case a linear

theory is used to describe the small signal behavior even though the large signal behavior

is nonlinear.

This static strain theory begins with the assumption that the total particle displace-

ment field near the interface of the two materials is a superposition of two particle dis-

placement fields. The first is a static displacement caused by crystal particle displacements

relative to the natural or initial crystal particle positions. This static displacement includes

any crystal deformation experienced during processing of the device, caused by previous

thermal expansion history. The second is the dynamic particle displacement which is

iscaused by the stress fields of the STW. The static strain is assumed to vary with time at a

very slow rate compared to the strain fields of the STW and is assumed to be constant with

time relative to the dynamic displacement. The spatial and temporal particle displacement
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can then be writcen

(z ~ (,:) V(zU,z,) (23)

where l' is the static stress, which is independent of time, and Ud is the dynamic dis-

placement which is a function of time. To justify the small signal analysis, the magnitude

of the dynamic displacement must be much smaller than that of the static strain.

u* > U d  (24)

In addition it is assumed that the net displacement is still governed by the linear acoustic

field equations
02U

V. T-- 0t (25)

V'u

The constitutive stress strain relation includes the nonlinear stress strain behavior

and has the form

• = CjSJ + CIJKSKSJ (26)

where ctj and CIJK are the second- and third-order elastic constants which can be found

in the literature. °'0 1 '.'5 181 7 Substituting the assumed particle displacement U into the

strain relation Eq. 25 we find

S = So + Sd = V U, + VUd (27)

which has the same form as the particle displacement (i.e., a superposition of a large static

strain and a small dynamic strain). If we substitute this strain into the constitutive relation

we find the stress to be of the form

T, - T1@ - TJ (28)

where
Ts= CjjS' + CIJKS'JSK

,:. ~~~~ rJ=c,,S + CJ K, J s + CJ J, ',
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If it is assumed that the second-order term in the dynamic stress equation is negligible,

then the dynamic constitutive relation becomes

T -- (,.Sd + IJKSKSd (29a)

I= C., + cI.KSjSd (29b)

Substitution of these constitutive relations into the divergence of stress relation (Eq. 25a)

separates the analysis into two problems, a static problem

VT ° = 0

-,C gJ S + CJK S S (30)

and a dynamic problem

V.Td 82UdV. T d --- pc312(31)

Td =

where

effl" = CIJ + CIJKS(

The dynamic acoustic equation can be applied to the STW problem, resulting in a wave

equation that includes the static stress effect

0&2ud

V." Ce l f : V Ud 2 t2 d (32)

This is a simplified static strain analysis resulting in a wave equation of the form used

in the STW theory described. This allows the addition of the static strain effect to

bi readily incorporated into the STW temperature theory already prescribed. A more

detailed discussion of the static strain effects, including changes in the material density

and nonlinear acoustic field equations, can be found in reference 18.

(c) Nonuniformity of Static Strain in the Substrate

If the effective stiffness has a constant uniform value throughout the crystal substrate.

then the problem in Eq. 32 has the same solution as the previous STW solution, but with

modified stiffness values. However the static strain field imposed by static forces on the
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crystal surface is not uniform throughout the crystal substrate and such an assumption

needs justification.

These static strains are expected to decay exponentially into the bulk of the crystal, to

vary periodically about an average value along the direction of STW propagation, and to be

uniform in the direction of the metal strip fingers. The stiffness along the STW propagation

direction would be expected to increase when the crystal strain is in compression (i.e.,

underneath a grating tooth) and then decrease when the crystal strain is in expansion

(between the grating teeth) or vice versa, depending on the expansion rates of the two

materials. Over a region of many grating periods this periodic increase and decrease of the

stiffness value would average out to be the unperturbed stiffness value which is uniform

along the direction of the wave propagation. In other words the effect of strain along tbe

STW propagation direction tends to cancel. This leaves the strain normal to the STW

propagation direction-that is, parallel to the strips. In a practical STW device the grating

width is much wider than the STW wavelength, and in the theoretical STW device the

width is infinite. In this case the static strain and thus the effective stiffness values should

not change appreciably within a few wavelengths of the surface. If the grating height is

sufficient to trap the STW energy within a few wavelengths of the surface, the effective

stiffness values as seen by the STW are very nearly uniform in the direction perpendicular

to the crystal surface. If we limit our discussion to wide aperture devices with many

grating fingers and well-trapped STW, we can assume the effective stiffness is uniform in

the region of influence of the STW.

* -. (d) Estimates of the Effect of Static Strain on STW Temperature Characteristics

The major strain component caused by the expansion or contraction of the metal strip

fingers will be parallel to the fingers and transverse to the STW propagation direction.

This strain component, acting over the full aperture, has large particle displacements and

gives the major contribution to the nonlinear stress strain reiation affecting the change

in the stiffness values. Those strain components perpendicular to the fingers tend to be

relieved by the gaps between the metal fingers, and do not have the opportunity to build
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up the large particle displacements of the components parallel to the fingers. Thus they

will have a smaller effect on the STW velocity. To maintain simplicity in the analysis, the

smaller strain component oriented along the wave propagation direction (or perpendicular

to the fingers) is neglected, and the static strain caused by the metal strips is assumed

to be uniform and acting parallel to the fingers (or in the X-direction, so that the static

strain is $,).

The effective trigonal crystal stiffness constants, used in the STW calculations of

section 1, for a uniform S, strain, become

effC5 - C5= + C55 8 S,

cr5 -- c6 + c66 1S,

C~faf c 861 S,

From the crystal symmetry

C5 51 = C155

c8s = [-2c,11 - C,1 2 + 3c2221/4 (34)

C881 = IC11 4 + 3c, 24]/2

and CIJK can be found in the literature for quartz' 5 and lithium niobate.' 7

Stress changes as high as 150 million newtons per square meter per degree celsius have

been observed in thin films of aluminum.' A stress change of this magnitude would result

in 51 strain changes on the order of 1700 ppm in quartz and 750 ppm in lithium niobate.

Substituting a S, strain of just 100 ppm into Eq. 33 gives rise to a change in the quartz

elastic constant c55 of 300 ppm per degree C apd the lithium niobate elastic constant c,5

of 100 ppm per degree C. Comparison with the elastic temperature coefficients of 177 ppm

per degree C for c55 in quartz1 ' and 430 ppm per degree C for c55 in lithium niobate'0

shows that static strain effects are far from negligible. Thus, to accurately predict the

icoustic wave temperature behavior of mass loading gratings, this static strain effect must

be included in any temperature analysis.

Anomalous temperature behavior in acoustic devices has long been observed at

Hewlett-Packard. 2" Theoretical temperature coefficients and the measured parameters were
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found to be in disagreement, and temperature-dependent static strain was proposed as the

cause of this discrepancy. An example of this unexpected behavior was observed in quartz

SAW resonators. Identical resonators exhibited varying drifts in resonant frequency with

age. It was discovered that if the resonators are put though an annealing process before

the final frequency trimming step, this frequency drift can be reduced. This observed be-

havior can be explained by static strains. The drift in frequency is caused by a relaxation

with aging of the very large initial stresses in the aluminum strips. During the annealing

processes the initial stress is reduced so that the change in strain with aging is greatly

reduced. After annealing, all the devices are brought to the same static stress level, so

that the behavior observed in each individual device is consistent with the other identi-

cal devices. These phenomena indicate the importance of considering static stress in this

temperature compensation investigation.

Before the effective stiffness result described above can be substituted into the earlier

STW theory to incorporate the effect of the static strain S1 on the wave velocity, it

is necessary to determine the strain S and its temperature variation. One method is

to consider the published thermal expansion rates and elastic constants of the substrate

and the aluminum, and then to calculate the induced strain, assuming no strain at an

initial temperature. This approach is not adequate for several reasons. First, the thermal

expansion and elastic coefficients of thin aluminum strips are not the same as the published

values for bulk aluminum. Also, in thin films these coefficients vary greatly with film

thickness and composition. In addition, the initial strain state of the device is a nonzero

because of the processing steps and past. temperature history. This initial strain state

may vary greatly from device to device and has to be determined to characterize the

temperature behavior of each new device.

For these reasons Si must be determined empirically for a given device. Once the

strain state of the device has been determined the effective stiffness can be substituted

into the STW theory described previously and a prediction made of the STW tempera-

N2 ture behavior. Once the experimentally-determined metal strip grating STW temperature

characteristics are obtained they can then be applied to the STW temperature compensa-
30
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tion theory described above. The difficulty is that the static strain versus temperature

properties depends on the grating geometry as well as on the material properties.

Fabrication of experimental STW devices for this program was started at Hewlett-

Packard during the summer of 1985. Both grooved STW gratings and metal strip grating

devices were projected. However, due to Hewlett-Packard's work scheduling requirements

at that time, none of the devices were completed. The etching process for the grooved

grating was never begun and the metal strip devices fabricated were not wire-bonded

and packaged. At present there exist 14 unfinished metal strip grating devices. These

consist of aluminum strip gratings with a period of 4 microns on ST-cut quartz substrate,

with interdigital transducers oriented to launch STW normal to the X-axis. The center

stop band frequency of the grating devices is near 670 MI-Iz. There are five different

metal thickness 3000, 2000, 1400, 1000, and 730A. They still need to be wire-bonded

and packaged before temperature measurements can begin. Further work on the STW

static strain theory will be published at a later date as a Ph.D dissertation and, if possible,

measurements will be made. A copy of this work will be submitted to the Paul Carr at

RADC as a follow-up to this report.

IV. NORMAL MODE SURFACE ACOUSTIC GRATING WAVES (SAGW)

(a) Overview of Grating Wave Characteristics

In rotated Y-cut trigonal crystals, surface skimming bulk waves (SSBW) exist only

for propagation normal to the X-axis. Addition of a surface grating converts these surface

skimming bulk shear waves into pure shear (or transverse) surface waves (STW). As

noted earlier, temperature-compensation of these waves on quartz. lithium niobate, and

lithium tantalate can be achieved by proper selection of the crystal orientation and the

grating dimensions. For lithium niobate and lithium tantalate, however, these cuts aro not

piezoelectrically active, and cannot be excited with an interdigitai transducer.

Piezoelectric coupling is present for propagation along the X-axis of rotated Y-cut

lithium niobate and lithium tantalate crystal plates, 21 ' 22 and these cuts are found to have
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the attractive feature of very strong piezoelectric coupling (AV/V - 0.02776 for -48 °

rotated Y-cut 2S). For this direction of propagation pure SSBW and STW exist only for cer-

tain specific rotation angles 22' 23 and for most angles only leaky waves exist. Consequently,

* to study temperature compensation of surface grating waves on piezoelectrically active cuts

it is necessary to extend the previous theory (developed for pure shear waves, polarized

parallel to the crystal surface) to the case of general polarizations. Two approaches will

be followed.

The first referred to as normal mode surface acoustic grating wave theory consists of

a perturbation theory which allows for an arbitrarily polarized Rayleigh surface wave as

,z the unperturbed wave solution. When a surface grating is present it perturbs the Rayleigh

wave propagation, resulting in a surface acoustic grating wave (SAGW) This normal mode

theory is discussed in more detail below.

The second is referred to as leaky surface wave theory, and consists of a direct numeri-

cal solution to the differential wave equation, and boundary conditions for arbitrarily

polarized surface wave propagation under grooved gratings on anisotropic crystals. In

general some of these orientations cannot support true surface waves on a smooth surface

because the wave radiates or leaks power in to the bulk of the substrate. This leaky wave

*theory will be discussed in a later section.

*(b) Normal Mode SAGW Theory

This approach assumes surface acoustic grating wave propagation on a thick

anisotropic crystal plate. The assumption of a plate of finite, but large, thickness is

needed to obtain a complete basis set of normal modes. On a thick plate the Rayleigh

mode is the same as a Rayleigh wave on a semi-infinite substrate, but it is a member of the

famili )f orthogonal modes of the plate. This normal mode property of the Rayleigh wave

greatly facilitates the analysis of Rayleigh grating wave propagation. Following the Floquet

method used for the STW case2 4 one can represent the particle displacement velocity Vx.)

and stress T_.,) fields by the space harmonic expansion
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-= I . .. exp(-i3.x) (33 i
[(X, Z)] n T~.j IT~,:)j T.!.)J

where
On =,8 +o +

,d

Without loss of generality, each individual space harmonic may be expanded in terms of

a series of plate mode functions or "normal mode functions" (including Rayleigh and B-G

waves). This gives
San[rvn(Z)jeCio.z rV.,,(Z) Cijoz(6

T()] = Tv(z)(36)

where each of the plate mode wave functions v satisfies the acoustic field equation for a

smooth surface at a particular frequency w,V,

r V 1 [Tnv(z). 1 __ F T o ,,(z)]
I 0 J.~ ~ VZI -i3 iw" [ 0 z 8 JT io (37)

To develop coupled space harmonic equations for a gr-"ting surface, Eq. 35 and Eq. 36 are

substituted into the acoustic field equations. The result is reduced to a set of coupled

equations in terms of the plate mode harmonic amplitudes a, by using the orthogonality

relations of the space harmonics and the plate modes, and then integrating throughout the

thickness of the substrate and over one period of the grating. The space harmonic equation

is further simplified by noting that the boundary conditions at the bottom of the plate

are those for a free surface, and the boundary conditions at the top of the plate are given

by the Datta-Hunsinger grating theory.8 Using the above simplifications, the acoustic field

equations reduce to a set of linear equations coupling the space harmonic mode amplitudes

amiA , aint,

(W - ')mM)amIA - K (38)

where

=- J" = m*, Tvy.. + v;., Tyy., + v*, Tzy. d

, f- (v, .VMJ + TA : SE Tm ] dy wm,, - V/I 3
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These are known as the space harmonic equations.

.As in the STW case an approximate theory for shallow gratings is obtained by

considering only the space harmonic interaction near the first resonance point. With this

near-resonance assumption, the infinite set of space harmonic equations can be reduced to

two equations for a pair of coupled harmonics, the Oth space harmonic and the -ith space

harmonic. The coupled normal mode space harmonic equations for the Rayleigh grating

wave are then (Appendix A1)

(u - V,3oR)aoR = a-l,RKo,- + ao,RKo,o

(P + V4- ,R)a-,R - a- 1 .RK-,- I + ao,RK -. O (39)

where

Ko,o = K-.,= A P (i I, y1
8A A) ,

K_,.o = -K , - Rv3(h ()[- ) 1
-1= R -1  + 2 Elf4A A P, ,

and

a, and a-, are the space harmonic amplitudes;

3 0,R and 3 -1.R are the space harmonic wave numbers;

VR = the normal mode velocity (Rayleigh velocity);

- the grating wave frequency;

C' normalized Y-polarized displacement;
S/PY/2 -= normalized Z-polarized displacement;

p = the density of the crystal;

h - the height of the surface grating;

A = the period of the surface grating.

To investigate the temperature characteristics of grating Rayleigh waves an analytical

expression for the grating wave phase velocity must be obtained from Eq. 39. To simplify

the solution of Eq. 39 it is assumed that the wave number of the grating wave does not

deviate much from the normal mode (Rayleigh) wave number. This simplification permits

expression of the coupling constants Ko-t and K-o as true constants, independent of the
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wave number. This is analogous to the simplification made in the STW theory, where the

term neglected was of second order and a deviation of 10% in the wave number caused

a deviation in the coupling constant of only 1%. It was also assumed the displacement

velocity under a grating tooth was equal to the velocity between the grating teeth. This

assumption was made by Datta-Hunsinger in calculating the boundary conditions under

the grating; and it must also be made here, to use their boundary conditions. After

making these assumptions, the surface acoustic grating wave phase velocity was found to

be (Appendix A2)

VSAGWh r[2U, 2 =U 2- - 1 (40)A 4ow 1 , P,

The quantities VR, U /Pl/ 2 ,and U/P]1 2 in Eq. 40 can be obtained from existing com-

puter programs, such as the one used by Slobodnik 21 or Andle.2' From numerical data at

several different temperatures, the temperature coefficients of VR, UZ/Pr, and Uy/P, can

be estimated. Using these temperature coefficients, along with those for the crystal expan-

sion coefficients found in the literature, 27 ,28 an analytical expression for the temperature
dependence of the surface acoustic wave velocity under a shallow grating can be obtained.

(c) Temperature Compensation of SAGW

(i) General Formulation

The Temperature Coefficient of Delay (TCD) equation

TCD1 dVSAGW (41)
VsAGW dT

is used to calculate the grating dimensions that give a zero temperature coefficient of delay.

Knowing the temperature dependence of the SAGW phase velocity discussed above, and

the expansion coefficient in the direction of wave propagation, one can solve the above TCD

equation for the grating height-to-period ratio that gives a zero temperature coefficient of
delay. This compensating height-to-period ratio was found to be (Appendix A3)

h VRTC - ATC (42)

.A V'2 L (ATe) + PV2 ,U + 2U2 c

8 PVlCU 4  ~7 1  I(TC)
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where

ATC PTC +hTC + 3VRTC + 2 ( 1 1 2 ATC

IYr TC

(ii) SAGW on Lithium Niobate

The SAW data for lithium niobate provided by Rick Webster at RADC, was used to

plot the height-to-period ratio needed to temperature compensate a SAGW propagation

normal to the X-axis on rotated Y-cut lithium niobate. This quantity is plotted versus

rotation angle in Fig. 9. The value of the smallest height-to-period ratio is approximately

4 at an angle of -35* (AV/V 74% of the maximum rotated Y-cut AV/V, Reference 25).

This shows that, for a grating on lithium niobate to completely temperature-compensate

the delay at room temperature, the "grating teeth" must be about eight times higher than

they are wide.

This result is a demonstration of a grating structure used to reduce the SAW TCD and,

in the case of deep gratings, to achieve complete temperature compensation of SAW devices

on the higher coupling materials. However, the grating dimensions needed to achieve

this theoretical temperature compensation calculated with the preceding theory must be

examined critically. First, the capabilities of today's technology do not allow fabrication of

grooved gratings with a height-to-width aspect ratio of eight. Even if these deep gratings

could be fabricated, the calculated dimensions of such a grating predicted by the preceding

theory must be questioned. The theory uses the Datta-Hunsinger perturbation formula

to calculate the stress fields under the grating. This formula assumes a small grating

height, and thus would not give accurate results for deep gratings. To achieve accurate

predictions of the deep grating heights a more detailed method must be used to calculate

the stress fields beneath the grating teeth. In lieu of trying to fabricate these deep gratings,

should they be calculated, shallow grating perturbation theory will be used to look for

shallow grating structures that can be manufactured using today's technology, with the

understanding that deep gratings can possibly aid the temperature compensation, but may
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FIGURE 9

Compensation height- to- period ratio needed to achieve a zero TCD for SAGW propagation
normal to the X-axis on rotated Y-cut lithium niobate using the Webster data.
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not have the exact height value needed to achieve complete temperature compensation.

Another objection to the above theory is that it does not consider the piezoelectric effect

on the wave propagation. This effect cannot be automatically neglected in the case of the

higher coupling materials, and will be considered in a later section of this report.

Calculations for lithium niobate have been compared using two differeL't sets of SAW

data, i.e., the Andle data from the University of Maine and data from Rick Webster at

RADC. The quantity compared was the height-to-period ratio needed to achieve a zero

TCD for SAGW propagation normal to the X-axis on rotated Y-cut lithium niobate.

Leaky bulk shear wave modes can exist on rotated Y-cut lithium niobate plates when the

rotation angle falls between 5 and 9W. For this reason, the validity of the SAW data is

considered somewhat doubtful in this region. Figure 10 shows the Andle data as a solid

curve and the Webster data as a dotted curve. As can be seen in the figure, the calculations

are in close agreement over the range of Y-cut angles where no leaky waves exist. In the

range of leaky waves (rotation angle from 1ff to 9CP), both the Andle data and the Webster

data were considered invalid because of numerical problems encountered in the computer

?*¢. programs used to calculate the SAW d'ata.

The near stop band assumption made in the previous calculations has also been

relaxed, so that calculations may be made at frequencies far removed from the stopband.

The resulting TCD equation was more complex than the original and had to be solved using

numerical techniques. To aid in the interpretation of the results the propagation constant

was first normalized by the stop band propagation constant 3, = r/A, and then this ratio

allowed to deviate from unity. Curves similar to those presented above are plotted for

values of 3/3, equal to 1.0, 0.9, and 0.8. It can be seen in Fig. 11 that, as 3 moves away.

from the stop band, the height-to-period ratio needed to achieve compensation is increased.

Thus we can say the temperature compensating effect of the grating is greatest near the

stop band. This characteristic of the temperature compensation effect was proposed earlier

in the STW work (Fig. 1) and, as expected, also holds true for the normal mode theory
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FIGURE 10

Comparison of compensation height- to- period ratio needed to achieve a zero TCD for
SAGW propagation normal to the X-axis on rotated y-cut lithium niobate. The Amdle
data is the solid curve, and the Webster data is the dotted curve.
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(ii) SAGW on Lithium Tantalate

Propagation normal to the X-axis on rotated Y-cut lithium tantalate has also been

considered. The Rayleigh surface acoustic wave (SAW) data was obt :..ed from Jeff Andle

at the University of Maine. The above theory, together with Andle's SAW data, was

used to compute the grating height needed to reduce the temperature coefficient of delay

(TCD) to zero at room temperature for varying angles of rotated Y-cut lithium tantalate

plates. Height-to-period ratios of the surface grating needed to achieve a zero TCD are

shown in Fig. 12 as a function of the Y-cut rotation angle. As expected, the minimum

height-to-period ratio required to achieve complete temperature compensation in lithium

tantalate (approximately 3 at a Y-cut rotation angle of -80) is less than that for lithium

niobate. However, this result implies a groove depth that is six times the groove width

and is subject to the same qualifications as in the case of lithium niobate.

These results confirm that the grating compensation mechanism works in principle

for lithium niobate and lithium tantalate. That is to say, the presence of a grating will

tend to reduce the magnitude of the TCD. However, the magnitude of the temperature

coefficient of lithium niobate at room temperature is so large that the grating height-to-

period ratio required to effectively compensate the SAGW are not realizable with present

fabrication techniques. In addition, the large height-to-period ratios predicted by this

first order perturbation theory are not describable by a first-order theory. For these

reasons, an actual prediction of the grating dimensions for temperature compensation

requires the incorporation of higher order grating effects into the theory. This would not

be practical because of the difficulty in manufacturing these deep gratings, even if they

could be accurately calculated.

(d) Piezoelectric Normal Mode Theory for SAGW

To complete the analysis of SAGW it is necessary to include the piezoelectric effect.

This theory is based on the Floquet theorem, as was the previous theory. However, instead

of expanding in terms of sums of combined plate mode displacement velocity and stress

fields as in the previous case
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the fields are expanded in individual sums for the displacement velocity, stress, and

potential fields.

n&,

Ty. X) = banv,(y)e- i Z(4

T(y.z) =E bnv We- 
(44)

nu

This expansion method makes for a more elegant solution, where the interpretation of

the electrical and mechanical boundary conditions is greatly simplified. The procedure for

finding the space harmonic equations is similar to the previous normal mode case, where we

substitute Eq. 44 into the quasi-static field equations and make use of the orthogonality of

the space harmonics to obtain the space harmonic equations. The resulting space harmonic

equation is

o {-v , T. i + 40., (iwD " j')+ 0(iw,,. i?)*}e ; '3 z dz = -i(w -w,M,)AUm.,, (45)

For a nonpiezoelectric problem the electrical terms drop out and we are left with Eq. 38.

which we have already solved. For a purely electrical grating T. n is zero, and Eq. 45

becomes

jA {O.,(iwD. i) + EPi~mjDm. t)elo" dz = -i(w - Wmj)AU, t,,, (46)

To evaluate the.integral on the left side of Eq. 46, we must find the D on the boundary

corresponding to each nv term in 0. As in the mechanical problem, the difficulty is in

determining approximate forms of the relation between 0 and D. Something similar to the

Datta-Hunsinger formula, used in the mechanical case, is required. Several approaches

to this problem have been considered. One is to use the metal overlay perturbation

calculation found in Ref. 20. Eqs. 12.36 and 12.37. These equations, with the electrical

surface impedance Z, give the potential function and normal D under the strip. This

formula is used in the calculation of scattering from a single metal strip,3 0 assuming that
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the surface boundary conditions are unperturbed at the gap between the strips. Following

this approach the left hand side of Eq. 46 becomes

I f',(0; ,iwoD . l)e' O' z dz (47)

with

D. = y anv(-O.(Eo + J),n.,

Substitution into Eq. 46 gives the space harmonic and mode coupling equations in terms

of the grating electrical parameters.

(u. - VR )am = - K.

1__TV R
2  eojeo+f r ) jn-

8A Fj7/tah(7,h) P,

___ (,V) eO(eO4.T) Y 34 In (48)

" J eo+, / tan h(-) mP ir(m-n)

where
ET =

More exact treatments of the electrical grating boundary conditions, including the effects

of open and short circuit metal strips, can be found in Ref. 31 and Ref. 32.

As in the mechanical case, it is assumed that all but two space harmonics are negligible

near the first stop band. These are the forward-traveling 0th space harmonic and the

backward -traveling -Ith space harmonic. The analysis is also limited to surface acoustic

wave propagation under a grating that has been etched into the surface of the crystal

plate (i.e., grooved gratings as opposed to metal strip gratings). The resulting coupled

space harmonic equations are then solved to find the change in the SAGW velocity due to

the electrical perturbation at the surface, near the first stop band. This gives

= E~~~O(C0 + Et) J . 4~
SW- --- o + / tanh(rh) PI L8 4 4-,r (4())

If only small surface perturbations are considered, the combined velocity change can be

found by adding the changes due to the mechanical and electrical perturbation separately.
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Recall the mechanical surface loading calculation neglecting the electrical effects treated

earlier (Eq. 40 ) resulted in the following change in the SAGW velocity due to mechanical

loading ' M +  I - + (5 0 )
AV SGW - (IP2 2~lII ~~-](0

(A 4 2 F ,

Linearly combining this with the velocity change due to the electrical surface loading in the

absence of the mechanical loading (Eq. 48), gives the SAGW velocity due to the combined

effect of mechanical loading and electrical loading near the first resonance stop band

VSAGW = VR + AVSMAGW sAGW

Using Eq. 51 in a temperature characteristic analysis analogous to that of the mechani-

cal case, one can solve for the height needed to achieve a zero TCD at room temperature

for various rotated Y-cut angles. The result of this calculation is shown as the solid line

in Fig. 13. A comparison with the previous SAGW calculation, neglecting piezoelectricity.

has also been included as a dotted curve. As can be seen from the curves the addition of a

piezoelectricity term had a very small effect on the dimensions needed to achieve complete

temperature compensation at room temperature.

(e) Proposed Experimental Device

The above calculations for the grooved grating dimensions required to temperature

compensate SAGW propagation normal to the X-axis on rotated Y-cut lithium niobate and

lithium tantalate plates, show that a deep grating (at least 3-1 aspect ratio) is required. We

suggest that the first experiment demonstrating this method of temperature compensation

be made on a -80 rotated Y-cut lithium tantalate plate, with the grooved grating etched as

deeply as possible. The temperature characteristics of the device'could then be compared

to one with a smooth surface. The grating height of the experimental device may not be

sufficient to achieve a turnover at room temperature, but it should exhibit a more favorabie

temperature characteristic. In this way the temperature compensating effect of the grating

can be verified. The result of this experiment may then be used to form a judgment of the

potential rewards of looking for more sophisticated and effective etching technologies.
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(f) Metal Strip SAGW

The electrical grating analyses of Ref. 31 has been used in considering the temperature

effects of periodic conducting strips on STW and SAGW, with no mass or elastic loading

effects. In particular, the results of Ref. 31 for the open circuit case were applied to

calculate the surface wave velocity under a conducting grating, where the strip width is

equal to the strip separation. This gives

VSAGW =V (52)
1 + 2(AVr/Vr)

where
AV,_ Vrshort - Vropen

V, Vropen

This appears as follows in the expression for the TCD.

TCD = ATC- VrTC + 2+(AV/Vr)(Vr TC (53)

The TCD equation consists of an unperturbed surface wave TCD term and a com-

pensating TCD term that is a function of AV,/V. Substituting the values of AVr/Vr for

wave propagation perpendicular to the X-axis on 20' rotated Y-cut (70* X-axis cylinder)

lithium niobate into the last term of Eq. 53 (see Appendix A4 ), resulted in a compensating

term of -4 ppm/C. This term will not be able to completely temperature-compensate the

unperturbed surface wave term which is greater than 60 ppm/C. Thus the conducting

strip grating could not be used by itself as an effective temperature-compensating method.

In reality the conducting strip could not have an infinitesimal thickness, and the static

stress temperature characteristics discussed in Section 111 will have a predominant effect

on the TCD (on the order of 100 ppm/C). This makes the metal strip electrical shorting

effect almost negligible compared to the static stress effect. In order to continue this

TCD analysis, the static strain effect would have to be incorporated in to this theory to

accurately predict the temperature behavior. This cannot be considered here because of

the empirical nature of the static stress theory. However once the static stress temperature

behavior has been established this shorting effect could be reconstructed with the effective

stiffness values, in the hope of achieving a favorable temperature characteristic.
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V. TRAPPING LEAKY SURFACE WAVES

(a) Introduction

The importance of propagation along the X-axis of rotated Y-cut trigonal crystals was

noted earlier. Along this direction of propagation there exists a leak3 3urface wave that

reduces to a pure SSBW for certain rotation angles. 33 ,3 4 35 These waves have very high

coupling constants and have aroused interest because of this fact.23 Another type of leaky

wave reported in the literature is the pseudosurface wave, which reduces to a perfectly

trapped Rayleigh wave for certain particular crystal cuts. These exist for a number of

materials and crystal cuts (see, for example, References 35 and 36).

Although the existence of the leaky surface waves described in the previous paragraph

has been known for some time, especially the pseudo SSBW X-propagating waves on

rotated Y-cut lithium niobate and lithium tantalate, they have not been successfully

exploited in device applications because of their excessive radiation losses. On quartz,

where pure SSBW have found some applications in delay lines at microwave frequencies

despite their diffraction losses, a severe limitation is the weak coupling. It has already

been noted that pure rotated Y-cut SSBW propagation normal to the X -axis cannot be

excited piezoelectrically in high coupling lithium niobate and lithium tantalate crystals.

Exploration of the strongly coupled pseudo SSBW on lithium niobate and lithium tantalate

is very important to the Air Force's need for low insertion loss broad band delay line

* devices at microwave frequencies. This requires trapping of the leaky wave on the surface

by means of a grating structure. In addition, the same grating might also be used

to temperature compensate the quasi-STW realized in this way, as was demonstrated

theoretically earlier in this report for SAGW propagation normal to the X-axis on rotated

Y-cut lithium niobate. An analytical technique developed for this purpose could also

extend the range of materials and cuts available for practical applications, by similarly

trapping and compensating pseudosurface waves of SAW type on arbitrary crystals. 3 5' 36

The normal mode SAGW theory presented earlier showed that the theoretical tem-

perature compensation of SAGW propagation normal to the X-axis on rotated Y-cut
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lithium niobate is possible with a deep grating. This is an important demonstration of

principle, which may well lead to significant practical consequences. However, the normal

mode approach cannot be applied to the leaky wave problem discussed above. The reason

is that leaky waves exist only on a half-space geometry, where no normal mode structure

exists, and thus the normal mode theory cannot be applied.

In view of the ultimate importance of the leaky wave problem, for reasons already

stated in the preceding paragraphs., an efficient leaky wave Floquet theory and numerical

algorithm has been developed. For a certain height of grating structure the leaky wave

becomes a "skimming wave," with no energy leakage. Beyond this height, the wave becomes

trapped as a quasi-STW. As a first step in followiag this leaky wave theory, the height of

the grating required to create a skimming wave is found. Before developing this approach,

some attention was given to the idea of first calculating the leaky wave fields for a smooth

surface (using, for example, the program available in Vetelino's group at the University

of Maine), add then trying to build a Floquet theory on this base- It soon became clear

that, to do this, it would be necessary to numerically compute the fields for each space

harmonic. Since the leaky wave calculation is itself complicated and time consuming, this

did not appear to be a viable method. Instead, the relatively simple direct method for

calculating the height of the grating required to convert a pseudo SSBW into a true SSBW

with mixed polarization was used. This method, based on the use of crystal slowness

surfaces, is outlined in the following paragraph.

For simplicity, we will consider only the case of X-propagating Y-cut waves. However

the program developed later in this section is completely general and can calculate grating

dimension for waves on a substrate of any crystal symmetry and orientation. The Floquet

theory used resembles that used for the theory for pure STW propagation normal to the

X-axis on rotated Y-cut crystals, but it is more complicated. In the substrate the fields

are expanded in space harmonics, and the coupled space harmonic equations are developed

by means of the Datta-Hunsinger boundary condition for the grating. For pure STW. each

space harmonic has only an SH polarization. For the case of quasi-STW, space harmonics

of all three polarizations exist. These can be visualized on the slowness curve Fig. 14, by
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FIGURE 14

Illustrates the condition for a skimming wave on X-propagating Z-cut lithium niobate or
tantalate.
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taking

K x = On (54)

wj w

This allows one to visualize which space harmonics are leaky and which are not. The

grating wave becomes nonleaky when /o/lw first reaches the extremum of the slow shear

wave. At this point, the 0th fast shear and longitudinal space harmonics are already

nonleaky and all of the higher space harmonics are nonleaky. To calculate the height of

grating required to make this a viable solution, the coupled mode approximation is made,

including in this case 0th and -lth space harmonics of all three types. The grating height

must then be evaluated by applying the zero determinant condition to the set of coupled

equations for these six space harmonic amplitudes. In this procedure, unlike the programs

developed for calculating surface wave velocities, the values of /., for the various space

harmonics are obtained from the slowness curves. They do not have to be guessed by

successive trials, as in numerical analysis of Rayleigh waves on a smooth surface, and

can be used directly to find the field values needed in setting up the boundary condition

equation for h. As in the space harmonic problems already treated, the accuracy of the

coupled mode solution can be subsequently tested and improved by including additional

space harmonic amplitudes.

(b) Trapping of Leaky Surface Waves

Consider plane surface wave propagation along the Z-axis of a nonpiezoelectric

anisotropic crystal half space with a rotated coordinate system orientated such that the

X - Z plane corresponds to the surface of the half space and the Y-axis is directed into

the crystal. As in the STW theory we consider a surface perturbation of this structure.

in the form of a shallow surface grating that is infinite in extent and orientated normal

to the direction of plane surface wave propagation. Floquet theory will be combined with

the method of superposition of partial waves to solve this single crystal grating problem.

In the STW case we had a simple unperturbed wave solution consisting of a shear

horizontal displacement velocity, the SH mode. Following Floquet theory, we assumed
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the perturbed wave solution to consist of a summation of space harmonics, where each

space harmonic is a pure SH wave at a different spatial frequency. For the more general

wave solution now under consideration, we know he unperturbed wave solution can be

expressed as a superposition of three partial waves (quasi longitudinal, fast quasi shear,

and slow quasi shear). Following Floquet theory, we can express the perturbed solution as

a sum of space harmonics, where each space harmonic is a pure unperturbed wave at a

different spatial frequency. The grating wave, or perturbed wave. then has a displacement

velocity solution of the form

%" Lf L F--c F)y. t(y,z.) Ia . ne + a. +n J-a n  one a e - e

where

an is the amplitude of the n-th quasi-longitudinal space harmonic.
F is the amplitude of the n-th fast quasi-shear space harmonic.as is the amplitude of the n-th slow quasi-shear space harmonic.

nt-L is the unit displacement velocity for the quasi-iongtudinal

partial wave.

,F1 is the unit displacement velocity for the fast quasi-shear.

partial wave.
n-s is the unit displacement velocity for the slow quasi-shear11n

partial wave.
0 L F S
an, a, and a are the complex lateral attenuation constants for

the quasi- longitudinal, fast quasi-shear, and slow

quasi-shear, respectively.

3n is the n-th space harmonic propagation constant along the Z-axis.

w is the grating wave frequency.

Y. The first step in finding a solution to the leaky wave problem is to find the partial wave

I! lateral attenuation constants and displacement velocity vectors. A partial wave solution

of the form described above is assumed.

an,,e- 56)
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This general partial wave solution is substituted into the acoustic wave equation,37 neglect-

ing the body forces F
a2vV. c •v =p--(57)

Following an approach similar to the one used to derive the Christoffel equation for triclinic

crystals,3 8 the following system of linear equations relating the attenuation constants and

displacement vectors to w and /3 for the three partial wave solutions in Eq. 55 was found.

D B Fvy =-0

F C. VE J
A= C'5502- c8C8a - i2cr _ pW

B = c44 3 - c22cxn - i2c243,an -02 C2 _ pw2
-- c33/ - c44 n - i2c-40nan

D -- c4 5,8n - C260n - i(C 4 s + C25) 3 fan (58)

E = c35/3n - C48 c4 - i(c45 + C3)I.a.

F = C34/3n - c2 4an - i(c 4 4 + c23 ),3na.

c= = the rotated stiffness constants.

Using numerical methods, this set of liner equations can be solved for the six complex

values of an, given ,. We then select the three lateral attenuation constants values that

correspond to surface wave solutions (i.e., those solutions which go to zero when Y is

infinite). These three values correspond to aL aF, and a s in Eq. 55.

These solutions are an extension of the slowness surface calculation. 31 If the lateral

attenuation constants are restricted to be pure imaginary (corresponding to wave propaga-

tion constants that are pure real) the solution to the above system of equations would result

in the crystal slowness surfaces discussed in the literature.3' This allows for a check of

the numerical program by selecting wave velocities that are greater than the slowest shear

wave and then comparing the solutions with the corresponding crystal slowness surface

discussed in the literature. In general, the lateral attenuation constants can be complex,

corresponding to wave propagation with attenuation.

Once the three partial wave attenuation constants have been found, then they can

be substituted into Eq. 58 to find the corresponding particle displacement velocity vectors
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[V., Vy, vZ]. In general, these velocity vectors are complex and the numerical computation

must allow for this possibility, as well as for possible pure mode displacement velocity

vectors.

Using the algorithm described above, three partial wave lateral attenuation constants

and displacement vectors can be found for each space harmonic, once the crystal orientation

and wave velocity have been specified. That is to say, if the numerical values for the wave

frequency w, the propagation constant Oo, crystal density p and the crystal stiffness values

cjj are known, then the three partial wave lateral attenuation constants and the three

particle displacement velocity vectors can be determined. This partial wave calculation

is then repeated for each space harmonic propagation constant 3, . These partial wave

solutions can now be used to solve the boundary condition equation at the surface of the

substrate.

The partial wave amplitudes of each individual space harmonic must be selected so

that the boundary ccodition at the surface of the half space is satisfied. In the general

geometry, Datta-Hunsinger boundary condition equations, including all three polarization

displacements, are applied. As in the STW case, this gives coupled space harmonic

equations; but, unlike the STW case, there are now three scalar equations corresponding

to each space harmonic. Using the orthogonality properties of the space harmonics and the

Datta-Hunsinger boundary conditions, as was done in the STW case, the three following

coupled space harmonic equations were found

L 2L F.1.2F S.2S =h ;L 4L F4F S 4S (59a)aqPq +aq q +aK a+ (5n9a) aL

aL.P4L +F *F +_s.,4S It E _L-3L + aF K3F + aK.3S (59b)
aq Vq -aq q .aq q A n annq 4" n  n q  

a n x n q

L..SL . j .OF s a h L SL F SF, ,pVL aqtlq + aq-q K +a K + asK (50c)
n

where
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'P [Cleo + iCj,5/qjtj~ + [C12 0-' + iCI4i0q~tf + [C 14 .24 + iCJ3/3q164}

Klj = wpeJ n = q
Kq - 9b - i Jn

t=z,y,z for 1=5,4,3

G J [(C'a + i n4 )V. + (4.a + ,C.4)V,. + (C n + a/-3'3)Vz]

In the previous analyses slow (or surface) wave solutions occurring below the first

stopband of the grating are calculated, in the weak grating approximation, by assuming all

but the 0th and -lth space harmonic amplitudes to be of negligible amplitude. The infinite

set of coupled space harmonic equations Eq. 59 is then reduced to six linear equations with

the following characteristic determinant.
2L 2F 2S 4L 4F 4S L

Xoo Xoo Xo X-1o -to X-1o °o

4L 4F 4S 3L 3F 3S
Xoo Xoo Xoo X-0o X-0o X-1o

OL OF OS &L 6F SS
Xoo Xoo Xoo X-io X-io X-o ao ,=0o (60)

4L 4F 4S 2L_ 2F_ 2S_ aL 0(0
Xo- Xo- I Xo- I X-1_ X- I X-1 1 -1

3L 3F 3S 4L- 4F- 4S_ aXo-i Xo- I Xo-j X-1 I X -L-I X- 1 t -

SL SF S OL- OF_ as- a
LXo-z Xo- I Xo- i X-i-t X-1 I.- X-1 L J -W

where

X o= - -K
A -10

Ii h_ IA

I1= 1, 2, 3,4, 5, 6

t = 4, 3, 5 for I = 2, 4, 6, respectively

J = L, F, S
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Numerical methods were used to solve for the height-to-period ratio which satisfies

Eq. 60 at a specified wave velocity and crystal orientation-that is. for specified W, .,

crystal stiffness constants and crystal density. This height-to-period ratio corresponds

to the theoretical grating dimensions needed to trap the leaky wave, or in the case of a

non-leaky wave, the grating dimensions required to slow the surface wave velocity to the

velocity specified.

Equation (60) given above is of sixth order in the height-to-period ratio, and therefore

has six different solutions. If more space harmonics were included, there would be a

corresponding increase in the number of roots to the equation. Roots giving a real positive

height-to-period ratio correspond to the physical grating dimensions that would slow the

wave to the velocity specified in the program. If that velocity is slower than the slowest

bulk wave, then the wave is a trapped surface wave as described above. Complex roots

are not physically realizable, and must be regarded as spurious. In cases where none of

the six roots are real and positive, then the wave velocity specified at the beginning of the

numerical calculation cannot be achieved with a physical grating. However, if there is at

least one positive real root (or, in some cases, more than one) then these correspond to

grating heights that trap leaky waves at the specified velocity and crystal orientation.

(c) Numerical Results

A Fortran program based on the above algorithm has been developed and tested. The

program calculates the grating height-to-period ratio needed to slow a leaky wave to a

specified wave velocity. If the prespecified wave velocity is less than the slowest shear

bulk wave velocity found from the slowness surface, then the grating height-to-period

ratio found corresponds to one that will trap a leaky wave. The program can consider

arbitrary crystal cuts and propagation directions but neglects piezoelectricity. Neglecting

piezoelectricity sometimes can present a problem when comparing the results to other

published calculations of leaky waves on smooth surfaces. These published results included

the piezoelectric effect in the higher coupling materials considered (lithium niobate and

lithium tantalate) because the piezoelectrical effect can change the wave velocity on the
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order of 20%. To make completely accurate comparisons, the piezoelectrical potential

terms will have to be incorporated into the program in the future.

The program was applied to the problem of wave propagation along the X-axis of

Y-cut trigonal crystal half spaces of quartz, lithium niobate and lithium tantalate. The

real positive height-to-period ratio needed to trap the leaky waves or slow existing surface

waves was calculated for various assumed wave veic.ities. There are four major wave

velocity regions, two of which are of primary interest. Region One has wave velocities

greater than the slow bulk shear wave velocity. Region Two has wave velocities greater

than the SAW velocity, but less than the slow bulk shear wave velocity. Region Three has

, wave velocities less than the SAW velocity, but greater than the minimum trapped wave

velocity. Finally, Region Four has wave velocities less than the minimum trapped wave

velocity.

In Region One the program fails to find any roots because some of the partial wave

lateral attenuation constants needed in the partial wave solution are pure-imaginary. The

program bases its selection of the three attenuation constants a on the sign of the real

parts of the a's. If the real part of any a is zero, then the program rejects the initially

chosen velocity, because lateral attenuation constants suitable for trapped leaky waves

require roots with a positive real part.

In Regions Two and Three, the real parts of the a's are non-zero and the height-to-

period ratio is found to have real positive roots. These are the areas of major interest

and they have been plotted for wave propagation along the X-axis of Y-cut crystal half

spaces of quartz, lithium niobate, and lithium tantalate in Figs. 15, 16, 17, and 18. In

each case there exists a grating SAW solution and a trapped leaky wave solution. The

grating SAW has a real positive height-to-period ratio that descends from infinity, at the

minimum trapped wave velocity, to a value of zero, at the wave velocity corresponding

to the SAW velocity on a smooth surface, neglecting piezoelecticity. The trapped leaky

wave has a height-to-period ratio that descends from infinity, at the minimum trapped

leaky wave velocity, to a minimum height-to-period ratio needed to trap the leaky wave.

This minimum height-to-period ratio needed to trap the leaky wave is the height-to-period
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FIGURE 15

Real height- to- period ratio needed to trap leaky wave and SAW propagating along the
X-axis of Y-cut quartz.
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FIGURE 16

Real height-to-period ratio needed to trap leaky wave and SAW propagating along the
X-axis of Y-cut lithium niobate.
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FIGURE 17

Real height- to- period ratio needed to trap leaky wave and SAW propagating along the
X-axis of -48* rotated Y-cut (maximum coupling Av/v = 0.02775).
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FIGURE 18

Real height- to- period ratio needed to trap leaky wave and SAW propagating along the
X-axis of Y-cut lithium tantalate.
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ratio needed to slow the leaky surface wave velocity, which is greater than the slow shear

bulk wave velocity (and thus leaky) to the slow shear bulk wave velocity where it become

a surface skimming wave. When the grating height is increased beyond this minimum, the

surface skimming wave becomes a trapped leaky wave.

In Region Four, the prespecified wave velocity is so slow that there are no real positive

height-to-period ratios that can slow the leaky wave to the specified velocity. Because no

real roots are present in this region it is not or interest for trapped leaky wave analysis

and will not be discussed further.

These encouraging results show that the grating dimensions needed to trap leaky

wavrs -an be calculated using the algorithm developed. However, the minimum grating

hei-lt-to-period ratios needed to trap X-propagating leaky waves on Y-cut crystals are

relatively large (quartz h/A = 1.3; lithium niobate h/A = 0.38; lithium tantalate h/A

- 0.29). This is the same as the problem encountered in normal mode SAGW theory,

where the large height-to-period results were questioned because of the shallow grating

assumption made in the Datta-Hunsinger boundary conditions. The gratings found here

are not as deep as those found earlier, but are still in the range where the Datta-Hunsinger

assumptions are in question. Any attempt to add additional grating height to temperature

compensate these trapped leaky waves would result in grating depths contradicting the

Datta-Hunsinger assumption.

To alleviate the deep grating problem described above the program was used to locate

crystal orientations where trapped leaky waves can be supported with shallow gratings.

The orientations considered are propagation along.the X-axis of rotated Y-cut quartz,

lithium niobate, and lithium tantalate crystal half spaces. The prespecified wave velocity

used in the program is the slow shear bulk wave velocity, which gives the grating height-to-

period ratio needed to turn the leaky wave into a surface skimming wave. These height-to-

period ratios are plotted as a function of crystal rotation angle for quartz, lithium niobate,

and lithium tantalate in Figs. 19, 20 and 21.

In lithium tantalate there is only one real positive root for the grating height-to-period

ratio needed to turn the leaky wave into a skimming wave. The grating height goes to
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FIGURE 19

Height- to- period ratio needed for surface skimming wave propagation on rotated Y-cut
quartz.
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FIGURE 20

Height-to-period ratio needed for surface skimming wave propagation on rotated Y-cut

lithium niobate.
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FIGURE 21

Height- to- period ratio needed for surface skimming wave propagation on rotated Y-cut
lithium tantalate.
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zero over a short range of Y-cut angles near 13CP. This angle corresponds to the surface

skimming wave reported in the literature22 (Note: The angle quoted in the literature,

calculated using the piezoelectric potential, is 1250; the angle found here, neglecting

piezoelectricity, is 130".) The grating dimensions near this rotated Y-cut correspond to

those of a shallow grating and are accurately predicted with this leaky wave theory. The

grating height can be increased to trap the skimming wave and thereby create a surface

grating wave on lithium tantalate. This type of surface wave has the high coupling of

lithium tantalate and also temperature characteristics that are a function of the grating

dimensions.

In the case of quartz and lithium niobate there are no rotated Y-cut angles found

that can trap a leaky wave with a grating height-to-period ratio less than 0.4. Because of

the deep grating problems described above, the temperature compensation investigation of

trapped leaky waves on these materials is open to question. However, with the piezoelectric

effect included in the program, there may be an additional solution that may allow for

trapping with shallow gratings. To develop this computation would require a piezoelectric

Vcounterpart of the Datta-Hunsinger equations.

The above analysis demonstrates the need for further work in this area. It already

shows that gratings can, in principle, be used to trap leaky surface acoustic waves, but a

more refined theory will be required for quantitative grating design ofsufficient accuracy for

devices. Such a further development would permit a systematic evaluation of piezoelectric

coupling and temperature compensation in trapped leaky waves for 'all doibly-rotated

crystal cuts. Since some leaky waves are already known to have very large piezoelectric

coupling, such an evaluation could well yield new crystal cuts providing optimized com-

binations of high coupling and temperature compensation for surface wave delay lines.
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VI. CONCLUSION

The original and modified goals of this project are repeated here to provide a perspec-

tive for this brief summary and interpretation of the results detailed above:

(a) Original Goals

The technical objective of this research was to further develop the theory of

horizontally-polarized shear surface wave propagation on surfaces having periodic mechani-

cal or electrical loading (surface transverse waves, STW), with special reference to their

temperature- and stress-compensation properties.

(i) Work statement for first 12-month period

Task 1 Develop and evaluate for various materials a temperature perturbation

analysis of TCD for grooved STW on rotated Y-cut trigonal crystals.

Task 2 Make a quantitative estimte of the degree of temperature compensation

achievable with a grooved structure, to determine the likelihood of achieving

zero temperature coefficient with choice of groove shape only.

(ii) Work statement for second 12-month period

Task 3 Look for temperature compensated gratings (involving grooves, mass loading

and conduction effects) for LiNbO 3 and LiTaO3 .

Task 4 Develop a theory of conducting strip STW theory for planar surfaces of

rotated Y-cut trigonal crystals and evaluate for various materials.

Task 5 Adapt Task 1 to mass loading STW.

Task 6 .Develop theory of grooved STW to include complete and partial conductive

coatings on rotated Y-cut trigonal crystals.

Task 7 Develop theory of grooved plus mass loading STW.

Task 8 Perform Task 3 in more detail.

(b) Modified Goals

In the second year of the program it was decided that the STW restriction is much

too limited, because very few crystal cuts exhibit this type of solution. Restriction to these
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cuts eliminates many useful substitutes, such as the high coupling X-propagating rotated

Y-cuts of lithium niobate and lithium tantalate. On these cuts important leaky surface

waves exist and have already been used to some extent in devices reported in the literature.

For this reason the goals were extended as follows:

Task 9 Develop a generalized grating wave theory for both SAW and leaky grating

waves on arbitrary crystal cuts.

Task 10 Use the generalized theory to develop a procedure for trapping a leaky surface

wave by means of a surface grating of appropriate design.

Task 11 Examine the temperature compensation properties of trapped leaky surface

waves.

(c) Tabulated Results and Recommendations

0 Grooved grating temperature compensation demonstrated theoretically for STW

(propagation to X on rotated Y-cut substitutes) in quartz, lithium niobate and

lithium tantalate.

* STW temperature compensated theory extended to mass loading gratings.

* Static strain effects characterized and evaluated for mass loading gratings-a

dominant effect.

" Electrical conduction grating effects on temperature compensation shown to be

much smaller than other effects, even in high coupling materials.

* Normal mode theory of Rayleigh grooved grating waves (SAGW) developed and

applied to X-propagation rotated Y-cuts-deep gratings required for compensa-

tion.

" Novel trapped leaky wave grating algorithm developed for arbitrary crystal cuts,

ignoring piezoelectricity.

* Leaky wave trapping calculations made for K-propagating rotated Y-cut quartz,

lithium niobate and lithium tantalate--modest to small grating heights required

for niobate and tantalate.
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* Observed that trapped leaky wave theory must be extended to include

piezoelectricity, before meaningful temperature compensation calculations can be

made.
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APPENDIX I

CALCULATION OF THE NORMAL MODE SPACE HARMONIC EQUATION

COUPLING TERMS USED IN EQ. 39.

(1) Start with the coupling term in the space harmonic Eq. (38) using Rayleigh wave

modes (p = v, = R) and note that, for Rayleigh wave modes, v., = 0

KmR,nR =[ V;-RT'y?.R + VRYT.1]yo dz (Al)
fAtmnRZw

1,,, =-- o + --A

2,rm
A
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(2) Recall from Reference 41 that the average stored energy per unit length in the n-th

space harmonic is given by

UmR,,R = 4PvR (A2)

where Payg is the average power in the Rayleigh wave per unit width, and VR is the

Rayleigh wave phase velocity.

(3) Further, recall the Datta-Hunsinger relation for T., and T,, of the n-th space harmonic

TY~ft = jwphv,, (M3)

TVZ. = jwphv,. ~h OTZZ (A4)
a3z

(4) Note that h and T.... are zero between the grating teeth (A/2 < z < A) and nonzero

under a tooth (0 < z < A/2). Because of this, the following expression can be found for

T..' where the delta functions come from the derivative of T,, at the edges of the grating

teeth.

TVM= jwph v,. +jh3nT,,q - hTz,.46(Z) - 6( Z - )]
(5) Note that the shallow grating assumption states that the stress fields in the grating

teeth are the same as those in the substrate. Therefore, using the acoustic field equations

in the substrate with a z displacement, the stress T,. is found to be

TZZ, PWVZ.

- -Substituting into Eq. (A4), T.. gives

TZ.= Tphv... [(z) - 6(Z - (A5)

(5) Substitute Eqs. (A2), (A3), and (A5) into Eq. (AI), giving

iwhVR rA/2r V 1.
Kmn,nR = - ivav: [; v + Z Z (6(z) - b(z - 1))je(I 3 -~)zdz ('A6)

and perform the integration, giving

WPS'VR V* tJ3  m = n

KWIR,IR =0 r..... .. 1
4APavg (M rm-~i -~)?
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(7) Make the near resonance approximation

m =0, -1

n=0, -1

#o = i/A

=_ -i =-/A

(8) Note that the relation between the forward wave and reverse wave particle displacement

velocities is (from Ref. 42)

VR- = -V +

and that the particle displacements normalizations used in the SAW data are

Pa-1, P1.

This leads to the relation for the coupling terms appearing in Eq. (39)

Koo = K-.-. = R2V(h)jIUyI 2

SA P,.
K0 ... 1  _ / -+ ___(A7)

V3 r(u;)h 2(U',)2
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APPENDIX 2

DERIRATION OF TILE SURFACE ACOUSTIC GRATING WAVE VELOCITY EQ.

(40) FROM THE NEAR STOP-BAND COUPLED WAVE EQUATION EQ. (39)

Recall that the near stop-band coupled wave equation (Eq. (39)) in matrix form is

-K-o w + VR-I3 -- K-l ] 1[: (A

The condition for a nontrivial solution for ao and a- is that the determinant of the matrix

is zero. Setting the determinant equal to zero gives the following characteristic equation

[w - VR o - Koo][w + VR/- - K-1-1] - Ko-,g-jo = 0 (A9)

where i-1 - ,o - 2-,r/A, Koo = K-1-1, and Ko- = K*11 0 . Solving the characteristic

equation (Ag) for the wave velocity w/i3, and making the near stop-band assumption 0o is

approximately i'/A, gives

- VR-A + Koo ± IKo- 1I2  (A10)

Suibstituting the values of KtS from Appendix Al gives the SAGW velocity expression in

Eq. (40)

pVR 2U1
VSAW=V A4 [2 P, , Pr ,Al
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APPENDIX 3

CALCULATION OF THE HEIGHT-TO-PERIOD RATIO NEEDED TO ACHIEVE A

ZERO TCD FOR SURFACE ACOUSTIC GRATING WAVE PROPAGATION NORMAL

TO THE XA-XIS ON ROTATED Y-CUT TRIGONAL CRYSTALS (SECTION IV.C).

The expression for the SAGW velocity was given in Eq. (40) as

h pVR 7r I Uy12  y2+~ A2VSAGW =VR - -- + A2
A 4 12Pr- P, ' 1

Assume a first order temperature variation of each of the different parameters of the form

(T) = X( + XTC T) (A13)

where
A(Tc) is the first order temperature coefficient of the parameter

X is the parameter value at a nominal temperature (25*C)

T is the change in temperature

Makin- this substitution into Eq. (40), and neglecting second order temperature coefficients

terms, grives

V"SAGW(r) = VSAGW(1 + '/SAGwTcT) (A 14)

where

'V5AGWT= VR VRTC - DDTC + FFTc
VSAGW

and
D hpV3wI'1~2

11 8 Rr,

DTC= PTC + hTC + 3V +2 Ill I TC
k )I TC

_ hp 3 (U2

,k 4 P, P,

FTc= PTc + hTC + 3VRrC + ( -+ 2~ T ATC
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The expression for the temperature coefficient of delay is, from Eq. (41)

TCD = 1 dV
VdT

Substitution of the crystal expansion coefficient in the direction of the SAGW propagation

and the SAGW velocity expression found above then gives

TCD = ATC - VSAGWrc (A15)

Setting this TCD expression (Eq. (A15)) equal to zero, and solving for the height to period

ratio gives
h VRrc - ATC (A16)

A P"'R LI(ATC)±+ PVR +2z.(BP,

This is the height-to-period ratio needed to achieve a zero TCD for a SAGW propagating

normal to the X-axis on rotated Y-cut trigonal crystals (Eq. (42)).
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APPENDIX 4

CALCULATION OF THE TEMPERATURE COEFFICIENT OF DELAY COMPENSATING

TERM FOR SURFACE WAVE PROPAGATION UNDER THIN MALASSLESS CONDUCTIVE

STRIP GRATINGS (SECTION IV.F).

The temperature coefficient of delay (TCD) equaLion for surface acoustic wave

propagation under a thin massless conducting strip grating was found to be, from Eq.

(53) AV/v V)(A )
TCD = ATC - Vrc + 2 + V.V),-C (,417)

where the unperturbed TCD term is

AT - 'rTc

an( the conducting strip perturbation temperature compensating term is

2+(AV,/V) ( 'Vr )T

An expression for the temperature coefficient of the change in Rayleigh wave velocity

T ((A;./r)TC) can be found from the Ingebrigtsen formula (Reference 43).

=- ( + Ty) Y(-01)

Making the near stop band assumption

7rV,=J --

A

gives
A T, Vl,(Eo + ET) 10,12

V A 4P,.

and assuming only first order temperature variation, as in Appendix 3 (Eq. (Al3)), gives

[] = VV-r(I + (A-) T) (A20)
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In the equation above, the first order temperature coefficient term is

( X 'TC VrTC ATC +ECITC+ 2( )')

where
'Eel frc 2YT zr

E3,,,C = C33rc Sn 0 +EIICcCoO

Ezzrc = C33Trc C050 - (I1Tc sin 0

0 is the rotated Y-cut angle which is 20P

for 70f X-axis cylinder.

Substituting the followving numerical values

=0.09747 Slobodnik (700 X-axis cylinder)

VrTC. = -0.875 X 10-4 /0 C Webster SAW data (7CP X-axis cylinder)

( 1/-' = -3.694 X 10-4 /'C Webster SAW data (70**X-axis cylinder)

T =3.8 2 X 10-4 Smith and Welsh

T3c 6.7 1 X 10-4 Smith and Welsh

ATC =0. 154 X 10-4 Smith and Welsh

gives a compensation factor

Vi/V (V, ) -- 4 ppm
2 +(AV/Vl) V7 JTC
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